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Introduction

Since the introduction of implantable cardioverter/
defibrillators (ICDs), total mortality after survived
sudden cardiac arrest has been dramatically reduced
[1,2]. In addition to showing the benefit for secondary
prevention of sudden cardiac death, several trials have
highlighted the potential of ICDs for primary preven-
tion of sudden cardiac death in patients with severely
reduced left ventricular function [3-5]. With this in
mind, the number of ICD implantations may dramati-
cally increase in the future, imposing a substantial
financial burden on health care systems. Therefore, the
introduction of less expensive ICDs with a limited
maximum shock energy and lower battery capacity to
deliver a limited number of defibrillation shocks has
been advocated [6,7]. Therefore, it may be desirable to
reduce the defibrillation energy requirement to the
lowest level possible [8].
There are different ways to reduce the energy required
for successful defibrillation, such as adjusting the

shock duration, shock polarity, or lead configuration
[9-11]. Significantly, the waveform itself has been
shown to have a major impact on defibrillation energy
requirements: current ICDs deliver truncated exponen-
tial waveforms that are discharged by a capacitor.
Technically, such shocks can be delivered in single or
multiple phases. For example, biphasic shock wave-
forms with two shock phases of opposite polarities
have consistently been proven to yield lower defibril-
lation thresholds (DFTs) than monophasic waveforms
[12-19]. There is some experimental evidence from
studies in cell cultures that triphasic shock waveforms
may improve defibrillation efficacy by reducing
myocardial injury [20]. However, so far this could not
be proven in clinical studies [21]. By contrast, an
experimental study by Huang [22] reported that alter-
ing the ratio of the length of the shock phases of tripha-
sic shocks may yield lower DFTs for triphasic as 
compared to biphasic shocks in some instances. 
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Materials and Methods

In total, eight pigs (70.0 ± 8.5 kg) were anesthetized
with azaperone (2 mg/kg i.m.), atropine (0.14 mg/kg
i.m.), and ketamine (20 mg/kg i.m.). Anesthesia was
maintained by ventilation with N2O and O2 (ratio 3:1,
Servo respirator, Siemens, Germany) and sodium pen-
tobarbital infusion. An arterial line was placed in the
carotid artery to monitor blood pressure. Arterial 
and central venous blood samples were taken every 
30 min in order to analyze electrolytes and blood
gases; abnormal values were instantly corrected. 
A defibrillation lead (Ventritex-SP-01, Ventritex,
USA) was inserted through the left external jugular
vein and then positioned in the right ventricular apex
(RVA). Thereby, the distal shock coil of the lead was
positioned in the right ventricular apex and the proxi-
mal coil in the superior vena cava. An ICD shell
(Ventritex Contour, Ventritex) was placed in the left
pectoral muscle to serve as a defibrillation electrode
("active can").

The energy requirements for successful defibrillation
critically depend on the pulse duration [9,11,23,24].
While it is well-known that the shock strength-duration
curves of monophasic and biphasic shocks resemble
inversely bell-shaped curves [9,25,26], no such evi-
dence is present for triphasic defibrillation shocks. 
An incorrect estimation of the defibrillation efficacy
can be avoided by comparing different waveforms at
their optimal waveform durations with minimal volt-
age at the DFT. Consequently, diverging results on 
the comparative defibrillation efficacy of biphasic 
versus triphasic shocks may be due in part to non-
optimized total shock durations of the respective 
waveforms.
In this study, we investigated the shape of the shock
strength-duration curve of internal triphasic defibrilla-
tion shocks in an animal model. To evaluate the true
defibrillation potential of triphasic shocks, we then
intraindividually compared the defibrillation efficacy
of triphasic and biphasic shocks each at optimal total
shock duration.

Figure 1. Panel a) Biphasic waveform. The duration of phase 1 and phase 2 was equal. The leading edge voltage of phase 2
was half the trailing edge voltage of phase 1. Panel b) Triphasic waveform. Phase 1, 2, and 3 durations made up for ¼, ½,
and ¼, respectively, of the total shock duration. The leading edge voltage of phase 1 was half the programmed voltage; the
leading edge of phase 2 was half the programmed voltage plus the trailing edge voltage of phase 1. The leading edge voltage
of the third phase was the trailing edge of the first phase minus half of the difference between the leading and trailing edge
voltages of the second phase.
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Shocks were delivered by a 150 µF capacitor for all
shock phases (Ventritex HVS-02, Ventritex). The RVA
coil served as the anode during phase 1 of biphasic or
triphasic shocks. The defibrillation coil in the superior
vena cava and the subpectoral ICD shell were used as
a common cathode during phase 1. For biphasic
shocks, the duration of phase 1 and phase 2 was equal-
ly long. The leading edge voltage of phase 2 was set at
half the trailing edge voltage of phase 1. The biphasic
waveform is schematically depicted in Figure 1. For
triphasic shocks, the ratio of the length of the 3 shock
phases was 1:2:1 (phase 1: phase 2: phase 3) based on
the settings of the same capacitor type. The leading
edge of phase 1 was half the programmed voltage,
whereas the leading edge voltage of phase 2 was half
the programmed voltage plus the trailing edge voltage
of phase 1. The leading edge voltage of phase 3 was
adjusted to equal the trailing edge voltage of phase 1
minus half of the difference between the leading and
trailing edge voltage of phase 2 (Figure 1). 
Biphasic and triphasic shocks were delivered in ran-
domized order using eight different total shock dura-
tions (2, 4, 6, 8, 10, 12, 14, 16 ms). For both wave-
forms, the impedance of the tissue/electrode system
was calculated by dividing peak shock voltage by peak
current.
Ventricular fibrillation (VF) was induced via the right
ventricular pacing leads with a burst of 50 Hz of alter-
nating current lasting 1.5 s at twice the diastolic pacing
threshold. Defibrillation shocks were delivered 10 s
after the onset of VF. Starting with a peak shock volt-
age of 710 V, the DFTs were determined using a step-
down/step-up protocol with a step-down size of 80 V,
a step-up size of 40 V, and final steps of 20 V. The
shock voltage was reduced by 80 V until the first defi-
brillation failure occurred. If a shock failed to termi-
nate VF, an internal 990 V shock was applied. 
The shock voltage for the next shock was then increased
by 40 V. Successful defibrillation at this energy level led
to a decrease, unsuccessful defibrillation to an increase
of 20 V. The lowest voltage at which successful defib-
rillation occurred was defined as DFT. After each VF
episode, we waited at least 3 min until VF was rein-
duced to allow for normalization of blood pressure and
heart rate. To ensure a stable DFT, a biphasic DFT at a
total shock duration of 10 ms was determined at the
beginning of the experiment and hourly thereafter. If the
DFT differed by more than 40 V for this control wave-
form, the pig was excluded from analysis.

Results

No animal was excluded from analysis due to an unsta-
ble DFT. For biphasic waveforms, the DFT signifi-
cantly depended on the total shock duration (p = 0.003,
ANOVA). The shock strength-duration curve for
biphasic shocks resembled an inverse bell-shaped
curve. The lowest DFTs were obtained at a total shock
duration of 10 ms (p < 0.05 vs. shock durations of 2, 4,
12, 14, 16, 18 ms; Figure 2). 
For triphasic waveforms, the total shock duration also
significantly affected the DFT (p < 0.005, ANOVA).
Similar to biphasic waveforms, the shock strength-
duration curve for triphasic shocks had an inverse
hyperbolic shape. For triphasic shock forms, the low-
est DFT values were obtained at a total shock duration
of 8 ms (p < 0.05 vs. shock durations of 2 ms, 4 ms;
Figure 2). 
The peak voltage of biphasic shocks at the shock dura-
tion with the lowest DFT (10 ms) was significantly
lower than the peak voltage of triphasic shocks at 
the shock duration that yielded the lowest DFT for
triphasic shocks (8 ms; 685.0 ± 108.2 V for biphasic
and 583.8 ± 62.8 V for triphasic waveforms, 
p < 0.05). The impedance of biphasic and triphasic
waveforms did not differ significantly (biphasic
shocks: 30.6 ± 3.1 Ω vs. triphasic shocks: 30.6 ± 3.0 Ω,
p = not significant).

Figure 2. Defibrillation thresholds of biphasic and triphasic
waveforms. The curves for both biphasic and triphasic
waveforms resemble inversely bell-shaped curves. DFTs at
optimal total shock duration (10 ms for biphasic and 8 ms
for triphasic waveforms) were significantly lower for bipha-
sic waveforms.
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amplitudes of the three phases) may have been respon-
sible for the worse performance of triphasic shocks as
compared to the biphasic shocks in our experiment. 
Comparing our results with observations made by
Huang and Ideker [22], it seems that besides waveform
duration, the ratio of the phase amplitudes of triphasic
shocks may play a crucial role for the defibrillation effi-
cacy. These authors applied shocks with a high-ampli-
tude first phase and a smaller-amplitude second and
third phase. Using such triphasic waveforms, the
authors demonstrated a slightly lower DFT for triphasic
shocks as compared to biphasic shocks. In view of the
substantial influence of total waveform duration on
triphasic defibrillation efficacy as observed in our study,
the defibrillation efficacy of triphasic shocks might even
have been higher if these authors would have tested
their specific triphasic waveform after optimization of
total waveform duration. This certainly warrants further
attention, as it may offer an additional opportunity to
reduce defibrillation energy requirements with specifi-
cally shaped triphasic shock waveforms.

Conclusion

Shock strength-duration curves for triphasic defibrilla-
tion shocks resemble inversely bell-shaped curves and
are similar to the shock strength-duration curves of
biphasic shocks. Biphasic and triphasic shocks have
defibrillation threshold minima at different shock dura-
tions, which must be accounted for when comparing
the defibrillation efficacy of both waveforms. At opti-
mized total shock durations, the defibrillation thresh-
old for triphasic shocks with a large-amplitude second
phase and a low-amplitude first and third phase is sig-
nificantly higher than for biphasic shocks. 
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