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Introduction

The theory of excitable media has proven to be a valu-
able tool for the investigation of the myocardial sub-
strate, especially for the propagation of electrical exci-
tation [1-4]. Wave propagation in the myocardium is a
so-called autowave process that is commonly observed
in a large number of systems in nature called active
media [2]. While waves in passive media generally
only transfer energy to the medium, autowaves also
receive energy from the active medium. The excitation
waves are thus not simply coupled to the medium in
which they propagate, but are generated by the medi-
um itself. In other words, they are well-defined states
of the medium. It should be noted that this fact impos-
es a severe restriction on the analysis of wave propa-
gation, since it is not possible to study monochromatic
waves in active media. 

The shape of an excitation wave depends mainly on the
local microscopic properties of the medium, and its
analysis allows us to draw conclusions about the state
of the myocardium and its pathologic alterations. This
local view of the myocardium is expanded by simulta-
neously analyzing the signals from more than one elec-
trode. An additional analysis may consist in determin-
ing the velocity of the spread of the electrical excita-
tion, which is an important parameter in connection
with atrial or ventricular fibrillation (AF or VF) and
other cardiac problems. In this article, we expand this
approach by determining the velocity not only for the
wave as a whole, but for its spectral components, more
precisely for its wavelet components. The developed
method is highly sensitive to inhomogeneities in the
microscopic properties of the medium. These inhomo-
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wave. These components generally have frequencies
well above the heart rate (> 10 Hz). 
In this paper, we propose using the formalism of wave
dispersion theory [7] to evaluate the properties of the
myocardium. Using wavelet decomposition, we devel-
oped a method for the reconstruction of an analogue of
the dispersion dependence for the myocardium ("equiva-
lent dispersion dependence") on the basis of electrical
intracardiac signals that are measured in two spatially
separated points of the myocardium. We have shown that
the equivalent dispersion dependences (EDD) for the
myocardium can have a form similar to the ones that are
typically obtained in the case of resonant wave-medium
interaction in passive media. We found that the number
of cardiac cycles with a resonant form of the dispersion
predominates in the normal state of the myocardium
while it decreases early on, before the onset of AF. We
hypothesized that an increasing number of non-resonant
cardiac cycles is a precursor of AF, and thus can serve to
predict fibrillation early on before its onset. 
We note, however, that the interpretation of the result-
ing EDD must be performed with great care and should
be limited to the fundamental features outlined above.
The proposed approach is a linear approximation of
nonlinear processes in the myocardium. The experi-
mental results, however, show that this approximation
can supply important information about the properties
of the myocardium, at least in the non-chaotic regimen. 

Dispersion Dependence and its Reconstruction

Wave-Packet Propagation in Dispersive Media
Macroscopic dispersion characteristics of a med-
ium can be described by dispersion dependence − the
frequency-dependent complex refraction index
η(ƒ ) = n(ƒ ) + iδ(ƒ ). Here n(ƒ ) is the real part of the
refraction index of the medium. The imaginary part
δ(ƒ ) characterizes the transmission of energy between
the wave and the medium [7]. To start with, for sim-
plicity let us consider a one-dimensional wave-packet
propagating along the spatial coordinate x with time t.
The wave can be represented by w(x,t) = a(x,t)cosϕ (x,t),
where a(x,t) is the slowly varying envelope of the
wave-packet. Let the signal have some mean frequen-
cy ƒ0, and the envelope have a distinct maximum. Then
we can estimate the wave-packet group velocity νg by
the propagation velocity of the maximum of the enve-
lope, and the phase velocity νp by the propagation
velocity of the constant phase ϕ(x,t) =ϕ0 = const. 

geneities, in turn, are widely considered to be of great
importance for the development of AF or VF.
Despite the different nature of passive and active
media, the fundamental mechanisms of wave propaga-
tion remain the same. In both cases, the dispersion
results from an interaction between the wave and the
medium. The interaction depends on the frequency of
the wave or its spectral components, be it a passive or
active medium. Consequently, refraction is also
observed in active media (see example in Figure 1 [5]),
and the index of refraction obeys the same physical
laws that are valid for passive media [6]. Thus we can
reasonably assume that the dispersion law provides the
theoretical framework for a quantitative treatment of
wave propagation in active media.
Resonances of the interaction between the wave and
the medium occur whenever their temporal or spatial
characteristics match; in the present case, the time con-
stants for the opening of ensembles of ion channels in
the membrane or the characteristic length scales of
inhomogeneities in the myocardial properties. These
resonances do not occur because of a match with the
heart rate, but are due to the microscopic excitation of
the myocardium by only a spectral component of the

Figure 1. Setup for the numerical simulation of the wave
propagation in human atrial myocardium using Nygren's
description of ion channel dynamics [5]. The model consists
of a slab of 75 x 75 x 4 cubic supercells, each with an edge
length of 400 µm. The coupling of the supercells to the left
and right of the 45° border has been adjusted so that the
ratio of the velocities of propagation of the electrical excita-
tion to the left and to the right is vl/vr = 1.75. The equivalent
index of refraction is obtained from the angles α = 45° and
ß = 23° by n = sin α / sin ß = 1.81.
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Assume that we have measured the signals s(x1,t) and
s(x2,t), caused by propagation of the wave-packet
w(x,t) in two points, x1 and x2 that are separated by the
distance r. Then, calculating the time interval ∆tg

between the times when the envelope maximum pass-
es the two points, we obtain an estimate for the group
velocity νg = r/∆tg over the distance r. Analogously, we
can measure the time interval ∆tp for a constant phase,
e.g., ϕ0 = 0, and get the estimate of the phase velocity
νp = r/∆tp (Figure 2). The refraction index n(ƒ0) of such
a wave-packet can be calculated as the ratio of its
group velocity νg and its phase velocity νp.

For a wide class of signals s(t) the envelope a(t) and
the phase ϕ (t) can be calculated via the analytical sig-
nal z(t) = s(t) + iŝ(t), where ŝ(t) is the Hilbert conjugate
of s(t) [8]. The envelope is then given by

and the phase by

Thanks to the finiteness of the wave-packets, the imag-
inary part of the complex refraction index, the trans-
mission coefficient δ(ƒ0), can be estimated as the ratio
of the powers E1 and E2 of the signals measured at the
two points:

Although the dispersion properties of a passive medi-
um, i.e., n(ƒ)and δ(ƒ ) can best be studied by investi-
gating their response to monochromatic excitations of
different frequencies, this is not possible for the
myocardium. In the course of one normal cardiac
cycle, the excitation wave propagates as a single pulse.
In this case, we can reconstruct the dispersion proper-
ties of the myocardium by applying the above-
described dispersion approach to the wavelet compo-
nents of the intracardiac signals decomposed in fre-
quency space. We do not reconstruct the dispersion
dependence in the full classical sense of a passive
medium. In the case of the myocardium, we only
define an equivalent, namely the EDD. 

Wavelet Decomposition and the Wave-packet
Wavelet analysis is a mathematical tool that is widely
applied to solve many problems in biology and medi-
cine [9,10]. A wavelet set is a set of smooth and quick-
ly vanishing oscillating functions with good localiza-
tion both in frequency and time. Its components can be
interpreted as single signals of short times with oscil-
lating structures. Using wavelet analysis [11], a signal
s(t) can be represented as a superposition of functions,
generated by dilatations and shifts of a mother wavelet
ψ(t)

Figure 2. Estimate of the group νg and the phase νp veloci-
ties of the wave-packet propagation in the medium. Here,
s(x1,t) and s(x2,t) are the time (t) dependent signals mea-
sured at points x1 and x2 separated by the distance r, ∆tg is
the interval between the times when the envelope maximum
passes the two points, and ∆tp is the time interval for the
constant zero phase passing the same points. The group νg

and the phase νp velocities are estimated as νg = r/∆tg and
νp = r/∆tp, respectively.

(1)
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where aj = 2j, j = 0,1,2,... . The wavelet decomposition
has features that are very important to the problem we
are considering. Firstly, like the Fourier basis, the
wavelet basis is orthogonal and allows the independent
analysis of the individual signal components.
Secondly, wavelets can be chosen to be quickly damp-
ing oscillating functions (see Figure 3), similar to the
wave-packets under consideration. The transition from
one wavelet level to the next is equivalent to a twofold
compression of the time scale, or a twofold increase of
the mean frequency ω0. Thus, the wavelet basis is a set
of wave-packets with an exponential frequency spac-
ing of its components.
Let us consider some characteristic features of wavelet
decomposition. According to Equation 1, the wavelet
transformation allows us to substitute the initial signal
s(t) by the sum of component signals si(ai,t):

We will call them the "wavelet components" of the sig-
nal. In accordance with equation 3, each wavelet com-
ponent is a convolution of an aj-level decomposition
coefficient Cj(aj,t) of the original signal s(t) and the
ai-level wavelet ψ(t) itself. Due to the finiteness of the
wave-packet signal s, it follows from Equations 2 and 3
that the wavelet components sj of each level aj will be
finite, i.e., will be a signal caused by wave-packets.
Thus, the measured signal s = s(t) caused by the prop-
agation of the exitation wave can be interpreted as a
sum of signals sj = sj(t) caused by the simultaneous
propagation of a set of wave-packets with different fre-
quencies.
We apply the above introduced dispersion formalism not
directly to the signals s1(t) = s1(x1,t) and s2(t) = s2(x2,t)
measured at the points x1 and x2, but to their wavelet
components s1(ai,t) and s2(ai,t) of the same level ai. By
calculating η for wavelet components of different lev-
els, we finally obtain the complex refraction index and
its dependence on the wavelet level η(a) = n(a) + iδ (a).
Changing from the wavelet level a to the characteristic
frequency ƒ we get an estimate of the EDD frequency-
dependent refraction index for excitation wave propa-
gation in the myocardium, i.e., η(ƒ ) = n(ƒ ) + iδ (ƒ ).
For discrete signals, the frequency range available for
analysis is restricted: the maximum frequency is

The parameter τ determines the shift of the wavelet
ψ(t) along the axis t, and the parameter aj is the para-
meter of dilatation (the wavelet level). The coefficients
Cj are by definition:

Figure 3. Daubechies wavelets ψ(t) of the 7th order for two
adjacent levels.

Figure 4. Frequency ( f ) dependence of the transmission
coefficient δ(ƒ ) for the wavelet components (7th order
Daubechies wavelet) of the bipolar signals s(x1,t) and s(x2,t)
obtained in the numerical simulation of Figure 1.

(2)

(3)
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defined by the time discretization interval and the min-
imum frequency by the duration of the analysis inter-
val. For the maximum frequency, a convenient choice
is a0 = 20 = 1. In this case, the minimum frequency 
will correspond to aN = 2N. Although the wavelet basis
is usually formed on an exponential level net 
ai ∈ {20,21,...,2i-1,...,2N}, for our purposes we will also
use a more detailed linear net ai ∈ {1,2,3,...,i,...,2N}.
Indeed, an exponential level net of wavelet decompo-
sition is necessary for a qualitative approximation of
the initial signal. To evaluate dispersion characteristics
of the medium we analyze the peculiarities of the indi-
vidual wavelet components, which can be done in
more detail on a linear net. 

Results

To show the efficiency of the outlined approach, we
applied it to data obtained from a numerical simulation
of the human atrial myocardium and to two different
sets of experimental data. We demonstrated the capa-
bility of the method to characterize the state of the atri-
al myocardium with the objective of revealing precur-
sors for the occurrence of AF.

Reconstruction of EDD for a Wave Refraction on the
Inclined Border 
Wave "optics" in active media have already been
numerically studied for reaction-diffusion systems

Figure 5. Three examples of the frequency (f) dependence of
the transmission coefficient δ and of the refraction index n
evaluated for the IEGM wavelet components. Measurements
in patient C (panel c) were stopped due to atrial fibrillation
paroxysms. No rhythm disturbances were revealed in
patients A (panel a) and B (panel b). The analysis was per-
formed on the basis of the 7th level Daubechies wavelet.
Here, F is the band of analyzed frequencies and Fa is the
band of anomalous dispersion (dn/df < 0). Patient C demon-
strated no anomalous dispersion in the band of analysed fre-
quencies.

a b

c
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band that could be analyzed ranged from 8.2 − 11.9 Hz
to 68.2 − 29.6 Hz. The frequency limitations were due
to the signal waveform, the cardiac cycle duration, and
the noise level. 
Figure 5 depicts three examples of the frequency
dependence of the transmission coefficient δ and of
the refraction index n evaluated for the IEGM wavelet
components. As can be seen for patient A (Figure 5a,
top), the transmission coefficient δ (ƒ ) has a peak with
a maximum at 25 Hz. The refraction index n(ƒ )
demonstrates anomalous dispersion (dn/dƒ < 0) in the
range of the peak (Figure 5a, bottom). For patient B,
the transmission coefficient δ (ƒ ) also has a peak in the
region of 25 Hz (Figure 5b, top), but the region of the
refraction index is smaller than in the first case (Figure
5b, bottom). The transmission coefficient δ (ƒ ) for
patient C also has a peak (Figure 5c, top), but it is less
pronounced and shifted to higher frequencies with its
maximum at about 45 Hz. The refraction index (Figure
5c, bottom) demonstrates a very small region of anom-
alous dispersion in this case. The peak in the transmis-
sion coefficient together with the anomalous disper-
sion depicted in Figure 5a is typical for a resonant

using the Brusselator model [6]. In our studies, we per-
formed simulations of the electrical wave propagation
in human atrial myocardium using Nygren's descrip-
tion of ion channel dynamics [5]. The setup consists of
a rectangular slab of 75 x 75 x 4 supercells represent-
ing the atrial myocardium. Each supercell has an edge
length of 400 µm and is individually described by
Nygren's formalism for atrial cells. The slab is embed-
ded in a passive conductive medium representing sur-
rounding tissue and blood. The supercells are mutually
coupled by passive gap-junctions and additionally to
the cleft space, i.e., the extracellular space between the
cells. The resulting electrical circuit thus consists of
two nested 3D resistor networks. 
For the simulation, the differential equations that gov-
ern cell membrane dynamics are solved in each time
increment, and subsequently the resulting current and
voltage distribution is calculated. A wave propagating
in the "virtual myocardium" can be triggered by stim-
ulation with a voltage pulse at the "virtual electrodes."
The microscopic properties of the supercells and the
gap-junctions can be individually adjusted. In this way,
the 45° "prism" of Figure 1 has been constructed. By
varying the gap-junction conductivity to the left and
the right of the interface the different velocities 
of wave propagation have been set, the ratio being 
νl/νr = 1.75. From the vector field in Figure 1, the
refraction of the wave is evident, and a refraction index
of the myocardium of n = 1.81 is obtained.
Applying our novel method of analysis to the electrical
signals obtained from the two bipolar electrodes placed
on the myocardium model (x1 and x2 in Figure 1), we
obtain the expected equivalent resonance feature
(Figure 4) that can also be reconstructed for experi-
mental bipolar intracardiac electrograms (IEGM).

Dispersion Properties of the Atrial Myocardium
Obtained from the Analysis of Bipolar Intracardiac
Electrograms
We analyzed IEGM fragments (with durations between
12 s to 16 s) that were simultaneously measured with
two bipolar leads introduced into the right atrium and
the coronary sinus of patients with a high risk for AF.
The IEGMs were sampled at frequencies of 2 kHz and
2.6 kHz. In two patients, the measurements were
stopped due to triggered AF paroxysms. The EDD of
the myocardium was evaluated for each cardiac cycle
(on average 15 cycles per patient) using the 7th level
Daubechies wavelets on a "linear scale." The frequency

Figure 6. Mean values of the parameter K, characterizing
the resonant coupling of the excitation wave and the
myocardium in the right atrium, were evaluated for 17
patients. The measurement was interrupted in patients C
and D due to atrial fibrillation paroxysms. Equivalent dis-
persion dependences typical for patients with normal sinus
rhythm (patients A and B) and atrial fibrillation patients
(patient C) are plotted in Figures 5a, 5b, and 5c, respec-
tively.
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wave-medium interaction. This observation reflects
the resonant character of the interaction of the excita-
tion wave with the myocardial cells. The resonance
occurs in the range of 50 − 100 ms, values similar to
those determined for cellular processes.
The excitation propagation in the atria of patient A
demonstrates a pronounced resonant character of the
coupling between the excitation wave and the
myocardium. This observation should be expected in a
physiologic or normal case; this concurs with the fact
that patient A did not reveal any heart arrhythmia.
Patient C, on the other hand, developed AF paroxysms
in the course of the measurement, and consequently no
resonant coupling features are observed. This decou-
pling of wave and medium can be interpreted as occur-
ring due to a pathological state of the myocardium and
might serve as a precursor for AF.
In order to quantify the state of the myocardium, we
introduce a parameter for the resonance coupling prop-
erties of the myocardium as 

(see Figure 5 for the frequency range definitions of F
and Fa). The parameter K can range from 0 to 100%.
The value K = 100% corresponds to Fa = 0, i.e., no
anomalous dispersion in the analyzed frequency band,
while K = 100% means that Fa = F, i.e., anomalous dis-
persion is observed over the whole frequency band.
Figure 6 depicts the mean K values calculated for the
IEGM records of 17 patients. The evaluation was per-
formed for the frequency range F = 15 − 45 Hz with an
averaging over 15 cardiac cycles. Patients A, B, and C
(above) correspond to the letters A, B, and C in Figure
6. Patients C and D were the only ones to develop AF
paroxysms during the measurement; they have the
lowest K values (0% and 5%) among all patients
included in the study.
The examples in this study demonstrate that EDD
calculated for the wavelet components of the IEGM
signals measured simultaneously at two distant sites
in the atria has resonant characteristics in different
non-AF patients, while it is absent or only just per-
ceptible in AF patients. For patients with increasing
risk of AF, one should expect a gradual smearing of
the resonant peak and disappearance of the anom-
alous dispersion. 

Figure 7. Frequency (f) dependence of the transmission coefficient δ for the wavelet components (7th order Daubechies
wavelet) of the atrial monophasic action potential signals measured in the same patient, but in two different cardiac cycles.
The resonance quality factor for the two beats (see text) has considerably different values: R = 44.9% (panel a) and R = 18.7%
(panel b). Here again F is the band used for the analysis, and FLF is the low frequency band.
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n(ƒ ) calculations were not satisfactory for the analysis.
Thus, the analyses were carried out using the transmis-
sion coefficient δ = δ (ƒ ). The dispersion characteris-
tics of the transmission coefficient varied over time for
each patient. For some beats, the δ had a very pro-
nounced resonant character; for others no resonance
features were evident. Figure 5 depicts two examples
of the transmission coefficient δ (ƒ ) calculated for dif-
ferent cycles in the same patient. In Figure 7a distinct
resonance peaks are present, while almost no reso-
nance features are distinguishable in Figure 7b.
Analysis of the MAPs show that in the normal state
(i.e., early on before the onset of AF) the number of
cycles with resonance features is much higher than the
number of non-resonant ones. Shortly before the onset
of AF the number of non-resonant cycles increases and
even becomes dominant. The dynamics of this process
for developing AF is analyzed in the following manner.
We introduce a parameter R characterizing the quality
of the resonance in the transmission coefficient δ (ƒ )
and follow its variation over time until AF develops.
The parameter is calculated from the total area S under
the δ (ƒ ) curve over the whole analysed frequency
range F and the partial area SLF in the low frequency
range FLF (Figure 7): 

The parameter value is small without resonance in the
range FLF, but increases with a more and more pro-
nounced resonance. An analysis range F of 8 − 55 Hz
was chosen. The low frequency range FLF was defined
between 8 − 21 Hz. Using these frequency ranges, one
obtains R = 44.9% with a pronounced resonance
(Figure 7a) and R = 18.7% without any resonance fea-
tures (Figure 7b). Figure 8 depicts the course of the
resonance parameter R monitored over two sequential
AF episodes in one patient. The bold line shows the
mean value of R averaged over a sliding window of 
21 cardiac cycles. The first AF episode occurred on the
third day after the mitral valve replacement, at 8:48
(point T2 in Figure 8), and lasted almost 20 hours, until
6:21 the next day (point T3 in Figure 8). The second AF
episode started at 7:56 of the same day (point T5 in
Figure 8) and lasted more than 6 hours. As can be seen
in Figure 8, the resonance parameter R varied over the
monitoring intervals. Until 7:20, the mean value of R
lies around 37%, a value that is typical for resonant dis-
persion behavior (Figure 7a). Approximately 90 min

Dispersion Properties of the Atrial Myocardium in
Patients Following Mitral Valve Replacement by
Analysis of the Monophasic Action Potential
Mitral valve prosthesis patients are highly inclined to
develop AF during the first few days following the
operation. Over a 2-week period, we monitored the
monophasic action potentials (MAP) in a group of
patients immediately following valve replacement
[12]. The MAPs were recorded at a sampling rate of
500 Hz using two special MAP leads positioned epi-
cardially on the atria. We studied two AF episodes and
analyzed long-term MAP records over several hours
preceding the onset of AF. The dispersion and the time
course of the resonance peak were studied on a beat-to-
beat basis over more than 10000 excitations of the atri-
al myocardium. As in the analysis of IEGM fragments
described before, the 7th order Daubechies wavelet was
applied to the calculations. As the sampling frequency
was rather low and the interlead distance too small, the

Figure 8. Dynamics of the resonance parameter R calculat-
ed from two monophasic action potentials. The monophasic
action potentials (MAP) were recorded with two special
MAP leads fixed on the atrial epicardium of the patient dur-
ing the mitral valve replacement. Two sequential atrial fib-
rillation episodes (AF1 and AF2) were monitored. The bold
line shows the mean value of R. T2 and T3 are the onset and
the end of the AF1 epsiode, T5 is the onset of the AF2 episode;
T1 and the transition from T3 to T4 mark significant changes
of the mean value of R.
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before the onset of the first AF episode (point T1 in
Figure 8), the mean value suddenly dropped to 18%, a
value typical for a non-resonant dispersion (Figure 7b).
The value of R remained at this level over the entire
time interval preceeding the onset of the first AF
episode. At the end of the episode, the mean value
increased to 30% but again dropped to about 22% after
20 min (point T4 in Figure 8). It remained at that level
over an interval of 75 min prior to the beginning of the
second AF episode. Thus, both AF episodes were
marked by a significant decrease in the resonance para-
meter R some time before AF onset. A smaller reso-
nance parameter R indicated a weaker coupling of the
excitation wave to the atrial myocardium. The example
described above shows that this developed approach
can be applied to monitor patients with a high risk of
AF in the post-operative period, and that the dispersion
characteristics of the wavelet components derived for
the IEGM signals measured at two sites of atrial
myocardium can serve as AF precursors.

Discussion 

We have developed a novel method for determining
atrial myocardial properties by analyzing the disper-
sion that occurs for the wave propagation of electrical
excitation. In this situation, we measured the electrical
signals from two distant electrodes in the atria. The
signals were decomposed using wavelets in order to
obtain the frequency-dependent equivalent complex
refraction index. 
The classical method for determining the dispersion
properties of a passive medium is to investigate its
response to monochromatic excitations of different fre-
quencies. As already outlined in the Introduction, this
is not possible for active media such as atrial
myocardium. Nevertheless, in this case it is possible to
determine the dispersion by analyzing the "propaga-
tion" of the individual spectral components (wavelets)
of the excitation. Our experimental data showed that
by using this method, the dispersion properties of the
atrial myocardium can be analyzed in the frequency
ranges between 5 Hz and 100 Hz.
Strong spectral components are expected to originate
from the fast upstroke of the action potential that
occurs at the leading edge of the atrial excitation wave.
This upstroke is due to the triggered opening of an
ensemble of ion channels in the cell membrane. The
characteristic time constant for this process is in the

range from 5 ms to 100 ms, and thus corresponds to
frequencies of 200 Hz and 10 Hz, respectively, in the
physiologic case. Experimental [13,14] and numerical
simulations [15] have determined that the threshold for
the effective stimulation of the atrial myocardium by
alternating currents strongly depends on the frequency.
The threshold for the excitation is lowest in the fre-
quency band between 10 Hz and 100 Hz. This fact cor-
roborates the notion that externally applied 'monochro-
matic waves' of such frequencies are in 'resonance'
with the myocardium.
Pathologic alterations of the myocardial properties are
manifested in changes of the expression of ion chan-
nels and their characteristic time constants. Generally,
these changes do not effect the myocardium as a whole
but occur only locally. The result is a highly inhomo-
geneous distribution of the microscopic properties of
the medium, and the refraction of the excitation wave
logically depends on changes in the temporal and spa-
tial correlation of these inhomogeneities. We have
shown that the dispersion has a pronounced resonant
character in the normal state of the myocardium, while
the resonance gradually vanishes early before the onset
of AF. By counting the relative number of resonant
cycles, we obtain a measure for the risk of upcoming
AF paroxysms. 

Conclusion

This developed approach provides a promising instru-
ment for monitoring the state of the myocardium and
for predicting pathologic processes at an early stage.
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