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Introduction

Model studies of flows in liquid-filled, distensible
tubes are conducted in order to understand the many
aspects of the cardiovascular system in physiological
and pathological states. Blood flow in arteries is dom-
inated by instability and by wave-propagation phe-
nomena generated by the interaction of the blood with
the arterial wall. The importance of the arterial
mechanics is widely recognized in modeling hemody-
namic problems. Some work has been carried out with
the simplistic assumption that the vessel wall is linear-
ly elastic and isotropic [1,2]. Actually, the complex
nature of biological tissues requires the development
of nonlinear theories. Nonlinearities are not very rele-
vant for predictions of wave speed, but do influence
the pressure and flow-waveforms. This type of nonlin-
earity is a consequence of the curvature of the strain-
stress function showing that an artery becomes stiffer
as the distending pressure is raised. Some authors have
shown that elasticity dominates the nonlinear mechan-
ical properties of arterial tissues, whereas the vessel

viscosity can be considered as a second-order effect
[3]. On the other hand, experimental studies indicate
that the arterial material is viscoelastic and anisotrop-
ic [4]. In principle, the viscoelastic dissipation of the
vascular wall proves to be more important than the
viscous dissipation of the blood. In fact, the latter can
be neglected in a number of applications involving
large blood vessels [1]. A review of the theoretical
developments and new trends in arterial mechanics is
given in [5].
Many theoretical and experimental formulations have
been developed to describe the finite deformation and
the nonlinear viscoelasticity of arteries in time-depen-
dent flows. A nonlinear constitutive relation for the
vascular wall that depends on the Green strains has
been introduced in [6] and a stability analysis of the
saccular aneurysm evolution is presented in [7]. In the
present work, such a model is expanded to include the
effects of the viscoelasticity of the solid wall. This is
done in the following by letting the stress be a function
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ial, it is possible to define a strain-energy function W as
a function of the stretch-ratio in variants I1, I2, I3: this
represents the elastically stored energy per unit volume
in terms of the strain variables and represents a poten-
tial for the stress [12]. The problem of determining the
form of the strain-energy function for biological mate-
rials has been examined from theoretical and experi-
mental point of view. A variety of mathematical
expressions for W has been proposed in biomechanics,
depending on different materials and organic tissues;
their efficiency is tested by their ability to match the
experimental data over a wide range of strain values.
As pointed out by Fung [4] and other authors [5], the
properties of vascular tissues are highly nonlinear.
Some attempts to define a non-linear strain-energy
density function for the arterial tissue have been based
on the static relationship between strains and elastic
energy (see, for example, [4,6,13] and references there-
in).
Let us now consider the vessel wall modeled as an
elastic axisymmetric membrane. This is a two-dimen-
sional thin shell with a negligible mass compared with
that of the fluid contained in it. The membrane is capa-
ble of deforming under the forces exerted by the fluid,
is subject only to stresses in the tangential plane, and
has no bending stiffness. Let xP(s), rP(s) be the
Lagrangian coordinates of a particle P, with s being a
parametric coordinate along the membrane in its sym-
metry plane. The strain-energy density function per
unit area can be formulated as:

where

are the principal deformation ratios in the meridional
and circumferential directions, and Ru is the unde-
formed radius. In this context, a constitutive strain-
energy function modeling the mechanical properties of
the arterial wall has recently been proposed [6,7] as:

where c0 is a material parameter having the same
dimensions as w (force/length), c1 and c3 are nondi-

of both the strain and the strain rate. The inertia of the
wall mass, even including the effective mass from the
surrounding soft tissues, is negligible compared with
the elastic force because of low wall velocities [1], and
has been ignored.
Since we are interested in the pulse propagation phe-
nomena, assuming a quasi-1D flow is a valid approach
under the hypothesis that the wave amplitude is small
and the wavelength long compared with the tube
radius, so that the slope for the deformed wall remains
small at all times [8]. A homogeneous nonlinear vis-
coelastic tube filled with an incompressible fluid was
considered. All the quantities were assumed to vary in
the axial direction, while the equations were averaged
over the cross-section. The mathematical formulation
of the problem and some numerical results are present-
ed in the following for the unsteady flow sustained by
pure oscillatory forcing, as a benchmark case. The
flow dependence on the elasticity parameter and the
mean pressure is shown. The effect of the elasticity
parameter is related to the frequency of oscillations in
the transient period, while the influence of viscosity
parameter is to attenuate the natural oscillations, to
reduce the tendency of shock formation as in a purely
elastic wall model, and to counterbalance possible
instability phenomena. Despite the nonlinearity of the
elastic component, the results are qualitatively similar
to those obtained with a linear elastic relation studied
in [9], because of the small arterial deformations.
Finally, the effect of a varying elasticity coefficient
(e.g., due to a stent insertion [10,11]) on the flow
dynamics is described.
However, the numerical value of the elastic and vis-
cous coefficients appearing in the constitutive equation
are critical and need to be carefully assessed by com-
paring numerical results with experimental measure-
ments. Our aim is to achieve a satisfactory understand-
ing of the mechanism of propagation of the pressure
pulse, and of the changes in the pressure waveform
which occur as a result of the nonlinear wall-fluid
interaction as the pulse travels along the arteries.

Mathematical Models

The Viscoelasticity of the Vessel Wall
The adequate mechanical characterization of blood
vessels is an important prerequisite for a quantitative
description of blood flow, mostly in wave propagation
phenomena. For an incompressible hyperelastic mater-
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mensional constants, and Ek=(λ2
k-1)/2; k=1,2 are the

principal Green strains. Once the form of w is speci-
fied, the mechanical properties are completely deter-
mined, being the stress components (averaged across
the thickness) along the longitudinal and circumferen-
tial directions given by differentiation of w:

The former relations hold in the case of an incom-
pressible and isotropic material, where principal direc-
tions of strain and stress coincide and express the prop-
erty that the instantaneous Young's modulus increases
with the strain, but with a different amount in the two
directions [5]. Note that c0 acts as a scaling factor for
T1 and T2 (Figure 1). On the other hand, many authors
have pointed out that the vessel walls are viscoelastic.
Patel and Vaishnav verified the existence of arterial
viscoelasticity through a dynamical experiment [8].
Reuderink found that neglecting the viscoelasticity
causes an underestimation of both phase velocity and
damping [2]. Generally, a viscoelastic wall model
yields numerical results closer to physiological mea-
surement than an elastic one, and a dissipative wall is

(1.3)

Figure 1. The strain-stress functions from Equation 1.3 with c0 = 1, c1 = 11.82, c3 = 1.18. Definition of nondimensional elas-
ticity coefficient c0 is given in 2.0.
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cross-averaged momentum equation:

where f is a friction term [1]. This is approximated by
the friction term of the Poiseuille steady flow in a tube
of radius R given by:

with Re=U0R0/ν the Reynolds number. As a con-
sequence, the wall shear stress is approximated
by:

In principle, the former expressions (Equation 2.2 and
Equation 2.3) hold for a steady flow in a rigid tube, but
they are considered acceptable for quasi-steady flows
and for small deformations R ≈ R0 [2]. In a deformable
tube, the continuity equation is [1]:

Because of its small inertia, the vessel wall is modeled
as a membrane which deforms under the fluid forces
and reaches an equilibrium state. Let us indicate by
R(x,t) and S(x,t) the Eulerian counterparts of the
Lagrangian coordinates of a particle of the membrane
(see previous section). The fluid-membrane equilibri-
um equations in tangential and normal directions are
provided [12]:

where τ is the shear stress exerted by the viscous fluid
on the wall (Equation 2.3), nondimensional stresses T1

and T2 are defined as in Equation 1.4 and:

more effective than a dissipative fluid in eliminating
the high frequency oscillations. The damping caused
by viscoelasticity inhibits sharp peaks of the pressure
and flow pulses and leads to more realistic results
when compared with the experimental data [3]. The
simplest generalization of (Equation 2.3) including a
viscoelastic effect, is given the following strain-stress
relationship:

where γ > 0 is a wall viscosity coefficient and the dot
denotes time derivative [14]. Although the inertia of
the membrane is neglected and a general theoretical
framework is still lacking, in the model case studied
here, the simple functional dependence between strain
and stress in Equations 1.4 takes into account the vis-
cous effects of a material in time-dependent motions
and models the response of the arterial wall to the
deformation and to the rate of deformation. In other
words, the Equations 1.4 mean that the membrane does
not respond instantaneously to forces, as does a purely
elastic body, but rather with a dissipative mechanism
as a viscoelastic material.

The Wall-Fluid Coupling
Owing to the small deformations of the vascular wall
and to the unidirectional nature of waves in the arteri-
al tree, a quasi-one-dimensional model is adopted. Let
us consider a homogeneous fluid of density ρ flowing
in an axisymmetric distensible tube with a circular
cross section, and let us introduce a set of nondimen-
sional variables:

where x is the axial coordinate, R is the radius (with R0

a reference constant radius), u is the axial velocity
(with U0 a characteristic velocity), p denotes the trans-
mural pressure and t the time. Let us consider the 1D

(2.4)

(2.3)

(2.5)

(2.2)

(2.1)

(1.4)

(2.0)
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are the principal strains (the prime denotes x-derivative).
The former Equations 2.1, 2.4, and 2.5 model the non-
linear fluid-wall interaction and are solved in the seg-
ment between the two points x = 0 and x = L which
constitute the imaginary boundary of the differential
problem. Since the flow is subcritical, a value for u (or
p) has to be assigned at one boundary and a value for u
(or p) at the other boundary. To understand the intrin-
sic fluid-wall dynamics, it is important to study the
transient to the equilibrium configuration: in such a
case, two constant values are assigned for p at the inlet
and for u at the outlet:

Alternatively, by considering the relevance of a pul-
satile forcing in modeling vascular flows, two oscilla-
tory boundary conditions are given at the extrema:

where Ap and Au are nondimensional amplitudes and St

= R0/(U0T0) is the Strouhal number and T0 is the period
of the incoming and outgoing waves. Since the arterial
wavelength is much larger than the length of a vessel,
the phase shift and difference in frequency at the inlet
and outlet conditions (Equation 2.8) are small and do
not significantly alter the dynamics of the system.
Typical nondimensional values in physiological
regimes are

for R0 = 0.5 cm, U0 = 50 cm/s, T0 = 1 s and a mean
pressure of 75 mmHg, respectively. Finally, the bound-
ary conditions for S are imposed by considering an
arbitrary value at x = 0 and a linear increasing at x = L,
that is:

S (0,t) = 0 S’ (L,t) = 1 (2.10)

By evaluating the lower Equation 2.5 at the boundary
points with the conditions R' = 0, R'' = 0, two addi-
tional equations are obtained

pR = T2 (2.11)

which are equivalent to Laplace's law. The initial con-
dition is chosen by considering an arbitrary configura-
tion, which is obtained from the steady Poiseuille flow.
Then the system is allowed to evolve toward its equi-
librium configuration (Equation 2.7) or forced by an
oscillating flow (Equation 2.8).

Numerical Methods and Results

The nonlinear equations describing the dynamics of
the fluid-wall interaction are discretized using a sec-
ond-order finite difference method centered in space.
Let us consider a sequence of n+1 equidistant grid
points xi for i=0,...,n with x0 = 0 and xn = L. The spa-
tial discretization is obtained by evaluating membrane
stresses, strains, and their time derivatives (see
Equations 1.4) at n inner points ξi=(xi+xi+1)/2 of a stag-
gered grid by considering averaged neighboring quan-
tities. On the other hand, the equilibrium equations
(Equation 2.5) and the fluid equations (Equations 2.1 –
2.4) are computed at the n-1 inner points xi. The time
discretization is based on the trapezoidal formula, in
such a way the global scheme is of a second order in
space and time. The resulting nonlinear system is
solved by a globally convergent Newton type method.
Nonlinear models turn out to be very sensitive to the
many material parameters that characterize the specif-
ic flow problem. The reference values are fixed as c1 =
11.82, c2 = 1.18 [7], γ = 100 and uref, Au, Ap and St as
in 2.9. The other parameters have been chosen around
some typical values to obtain results of physiological
interest, and varied within a typical range to test the
sensitivity of the system to perturbation. In particular,
5 ≤ c0 ≤ 500 and 1 ≤ pref ≤ 200 was chosen. The values
of c0 and pref are not independent; since the deformation
is proportional to the ratio pref/c0, it turns out that for
pref/c0 ≈< 0.01 the wall increases its stiffness and the
numerical problem becomes harder. On the other hand,
for a value of pref/c0 that is too large, the system under-
goes an unrealistically large deformation and the pre-
sent model is not physically permissible.

(2.6)

(2.7)

(2.8)

(2.9)
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The value of the deformation is not influenced by γ: the
viscous damping affects only waves of relatively short
length, such as those of the natural oscillation, but is
irrelevant for pulses of long wavelength, such as those

In all the experiments, L = 8, ∆x =10-2 and ∆t=5 x 10-4

were chosen. These values guarantee the numerical
stability of the system for the set of parameters consid-
ered. The accuracy of the solution is controlled since
the solution corresponding to a finer grid does not
reveal a different structure or unresolved patterns.
Since in wave propagation phenomena the dissipative
effect of the blood viscosity is a minor effect [4], an
inviscid fluid is considered (f = 0 in Equation 2.1 and
τ = 0 in upper Equation 2.5) in the following simula-
tions.

Steady Case
For the equilibrium configuration (Equation 2.7), the
effect of an arbitrary initial condition is irrelevant and
dies out after a period of transience. After this initial
transience all the variables asymptotically approach a
steady-state value with damped oscillations (natural
waves) exhibiting exponential decay and a c0-depen-
dent frequency St* (natural frequency), computed by
spectral analysis. Due to the the elasticity of the wall,
a positive deformation R at the final state is found for
p > 0. This steady deformation is independent of the
wall-viscosity coefficient γ and increases with the ratio
pref/c0. The natural waves disappear after a transient
period depending on γ, but numerical results show the
existence of a critical value γc below which spurious
wiggles appear and difficulties in convergence arise. In
this case the low viscosity of the wall is unable to
attenuate the natural oscillations [15] and no stable
steady solution has been found as γ → 0. A fundamen-
tal study of the natural waves in a viscoelastic tube and
its dependence on the parameters has been carried out
in [9].

Oscillatory Case
In the oscillatory case (Equation 2.8), the flow first
interferes with the natural wave (see steady case,
Equation 2.7) which, not being sustained, dies out in a
short time. Afterwards the persistence of sinusoidal
oscillations occurs with the same input frequency St

over the mean values given in the steady case and with
amplitudes depending on the elasticity parameter (see
below), while the frequency of the wave does not
change with c0, pref, as does the natural frequency St*.
To avoid this effect caused by the initial conditions, in
the numerical simulations the transient period has been
dropped in the numerical simulations and only the
solution after the second period is considered.

Figure 3. The time dependent deformation amplitude
R (x = 4, t) at the center of the tube at x = 4 for three values
of the elasticity coefficient c0 for pref = 40. See 2.0 and 2.9
for definition of nondimensional variables.

Figure 2. The deformation amplitude R (x = 4) (maximum value
over time) at the center of the tube in panel a) for c0 = 100
and varying mean pressure pref and in panel b) for pref = 40
and varying elasticity coefficient c0. Starred points are
results from simulations; continuous curves are obtained by
a linear interpolation. See 2.0 and 2.9 for definition of
nondimensional variables.

a

b
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in the vascular system (St<<St*). Nevertheless, a
numerical instability is reported when γ → 0. The use
of a numerical method devised for a purely elastic wall
will be the subject of a future investigation. If not stat-
ed otherwise, the value γ = 100 is considered in all the
simulations. The longitudinal deformation S exhibits
very small changes compared to the radial one and is
not discussed.
As can be seen in Figure 2, the dependence of the
amplitude of the deformation on pref is nearly linear,
while that on c0 is inversely linear. Figure 3 shows the
evolution of R at the central point for three values of c0.
The analysis of the radial velocity proves that the prop-
agation features correspond to transverse waves which
do not propagate along the tube and are due to the
boundary conditions that generate spurious reflections.
The phenomenon is similar to that of a stretched string
of a finite length with both ends oscillating. This draw-
back is overcome by coupling the present model with
a lumped parameter model that accounts for the global
circulation balance and induces travelling waves [16].
This will be done in a later study.
The present results agree qualitatively with those pre-
sented in [9] and show that the nonlinear character of the
strain-stress function (see Equation 2.3) is responsible
for minor changes with respect to the linear case. This is
because of the small strains of the arterial motion; in the
range of parameters considered: maxxt λ1 = 1.0003
and maxxt λ2 = 1.2.

Stent Insertion as a Clinical Application

The stenting methodology has been successfully
employed for many years to treat many vascular
pathologies that cause the arterial lumen to become
extremely reduced. This method is based on the mini-
mal invasive implantation of a tubular endoprosthesis,
the stent, to support the arterial wall (Figure 4).
Despite its complex geometrical structure and a variety
of mechanical characteristics, a stent can be schemati-
cally represented as a stiff cylindrical sleeve placed in
the vessel to prevent or correct narrowing of the sec-
tion (stenosis) [10]. Although the stent implantation
changes the geometry of the vessel and consequently
induces significant disturbances in the local flow
[11,17], the relevant effect in the wall-fluid interaction
is the change of the compliance due to the sudden
increase in the elasticity coefficient along the stent
length.

Let us consider a stent of length 2σ , centered on a
point x* and with an elasticity coefficient cs > c0. By
considering the model from Equation 1.2, the elastici-
ty parameter along the stented artery is given by

However, to avoid a compliance mismatch between the
relatively rigid stented segment and the distensible
vessel, the elasticity coefficient is modeled by a con-
tinuous rapidly changing function (Figure 5):

Thereby, for cs = c0, an uniform elasticity coefficient is
recovered. The effect of a physiological local harden-
ing or softening of an artery and the mechanical prop-
erties of stents can be also roughly modeled by varying
the value of δ and σ.
In the numerical simulations, L = 8, x*=4, σ=2 (stent
two diameters long), c0 = 100 were fixed and δ was
varied up to 19 in Equation 3.1, with the wall viscosi-
ty coefficient γ = 100 remaining constant. As expect-
ed, the maximum values of the deformation and the
pressure at the center of the tube are reduced along
with δ, and the asymptotic value of rigid wall is
reached (Figure 6). On the other hand, the variation of
the elasticity coefficient does not modify the frequen-
cy of the oscillation. The space-time evolution of the
membrane radial velocity in a stented artery is depict-
ed in Figure 7.

(3.0)

(3.1)

Figure 4. Implanted stent in a stenotic artery.
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Figure 7. Space-time evolution of the membrane radial velocity in a stented artery with c0 = 100, σ = 2, and pref = 40 for
δ = 0, 1, 9. Thick line indicates the zero level, a continuous line denotes positive levels, and a dashed line denotes negative
levels. See 2.0, 2.9 and 3.1 for definition of nondimensional variables.


