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T. BIEBERLE, B. HENSEL, M. SCHALDACH
Department of Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Germany

Summary

Instabilities in cardiovascular autonomic control play an important role in the genesis of atrial or ventricular tachy-
arrhythmias. Snce changes in autonomic tone produce changesin heart rate variability, it has been suggested that
heart rate variability be used for a stability analysis of cardiovascular autonomic control. We investigated the
importance of the sinus node in this scenario by analyzing the information transfer in a numerical single cell model
previously introduced by Dokos. Vagal activity is simulated through the release of bursts of acetylcholine. These
bursts are characterized by their phasef with respect to the cellular action potential, the number of acetylcholine
releases per burst, and the delay between subsequent releases. During continued vagal stimulation at constant
parameters, the cycle length of the action potential increases linearly over a wide range of the delay or the num-
ber of stimuli (constant phase, constant delay). If the total burst duration is kept constant, the cycle length exhibits
a strong non-linear dependence on the number of stimuli per burst. The cycle length increases monotonically with
increases in the phase shift. For values of f > 0.29 s, oscillations in the cycle length are observed. We modulated
the burst parameters with a time series generated by integrating the Mackey-Glass equation, and calculated the
correlation dimension of the cycle lengths in order to see whether the information on the dynamic of vagal activi-
ty isconserved in the cycle lengths. It turned out that the dynamics of the original time series may be entirely recon-
structed in those areas of parameter space where the cycle length exhibits a linear dependence on the parameters.
Reconstruction isimpaired in those regions where the cycles length exhibits a non-linear dependence on the para-
meters. Thus, we concluded that, in general, the dynamics of cardiovascular autonomic control may not be recon-
structed from the cycle lengths because the dynamic characteristics of the sinus node are superimposed.
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Introduction

Today, it is generally appreciated that imbalances in
cardiovascular autonomic control play an important
rolein the genesis of atrial or ventricular tachyarrhyth-
mias. Reduced vagal tone or increased sympathetic
tone are associated with an increased risk for ventricu-
lar tachycardia. Thereis evidencethat atria fibrillation
may be promoted by both enhanced parasympathetic
or sympathetic activity in selected patient populations.
It would therefore be highly desirable to deduce mark-
ers for prospective risk stratification from a stability

analysis of cardiovascular autonomic control [1].
However, direct measurement of the autonomic toneis
not possible. It has been shown, however, that the vari-
ability of the cardiac cycle length depends on auto-
nomic activity [2]. Thus, vagal tone is associated with
a peak between 0.15 and 0.4 Hz in the power spectral
density of the RR intervals, whereas sympathetic activ-
ity is expected to result in a maximum of between
0.04 and 0.15 Hz [1]. The urgent need for a non-inva-
sive, easy applicable method for prospective risk strat-
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ification has stimulated numerous investigations on
heart rate variability. These studies have revealed con-
troversia results, however. The early hypothesis that
the presence or absence of vagal protection isthe only
relevant factor has not been confirmed. Ultralow fre-
guency components of the power spectral density and
even depressed sympathetic HRV components seem to
have predictive power with respect to survival after
myocardia infarction [3]. Thus, one may conclude that
information on the stability of cardiovascular auto-
nomic control is encoded in the cardiac cycle lengths
in arather complex way.

On the other hand, the electrophysiologic processes
underlying heart rate variability have never been ana-
lyzed with respect to the information transfer from
autonomic control to the cardiac cycle length. The
sinoatrial node, atrioventricular node, conduction sys-
tem, and myocardium are known to be innervated by
sympathetic and parasympathetic nerves, and heart
rate increases or decreases following stimulation of the
respective nerves have been demonstrated in experi-
mental and numerical models. However, it has never
been investigated whether these processes conserve the
information on cardiovascular autonomic control. |If
information islost, it is not possible to unambiguously
reconstruct the dynamics of the autonomic nervous
system using the cardiac cycle length, and methods
based on dynamics reconstruction, such as fractal di-
mension or entropy, must fail. We therefore raised the
guestion of whether the dynamics of the cardiovascu-
lar autonomic control can be mapped one-to-one onto
the cardiac cycle length.

As mentioned above, it is not possible to directly
assess the integral level of the autonomic tone. Thus,
one might be inclined to investigate the map from
autonomic dynamics onto cardiac cycle length in sub-
systems where autonomic activity is accessible. In ani-
mal experiments, for example, the parasympathetic
nerves have been stimulated directly to study the effect
of this on the blood pressure and cardiac cycle length
(cf. [4]). Whilethis approach provided valuableinsight
under steady state conditions, it would not be useful for
studying dynamic effects, since compensatory effects
of other parts of the autonomic control cannot be elim-
inated under experimental conditions. This methodolo-
gical problem may be avoided by using a numerical
description of the mapping from cardiovascular auto-
nomic control onto cardiac cycle length. The numeri-
cal approach has the additional advantage that the

boundary conditions may be kept constant, which
would be very difficult to ensure during experimental
investigations.

The cyclic activity of the heart stems from the sponta-
neous formation of transmembrane action potentials in
the cells of the sinoatrial node. The electric excitation
then spreads from the sinus node across the atria and
passes through the atrioventricular node and the ven-
tricular conduction system, until eventually the ventric-
ular muscle is activated, causing a contraction. Thus,
the sinus node is the natural starting point for a system-
aic investigation of the information transfer from the
cardiovascular autonomic control to the cardiac cycle
length. In the following, we will analyze the informa-
tion transfer using the model of asingle, vagally driven
sinus node cell that was introduced by Dokos et al. in
1996 [5,6]. A time-delayed differential equation with
well-known dynamic behavior, the so-called Mackey-
Glass equation, will be used to modulate vagal activity
[7]. Then, the dynamic of the cdllular cycle length will
be analyzed and compared to the origina dynamic.

Materials and Methods

Brief Review of the Cell Model

The Dokos model of the rabbit sinus node cell is based
on the approach introduced in 1951 by Hodgkin and
Huxley, who described the cell membrane as an elec-
trica network of the transmembrane capacitance and
several conductive elements representing the different
currents of sodium, potassium, and calcium ions [8].
The conductive elements are described by means of
time- and voltage-dependent gate variables that are
assumed to follow a first-order kinetic. In the Dokos
cell model, this approach leads to 18 coupled differen-
tial equations that are integrated using a fourth order
Runge-Kutta method [9]. The model comprises seven
passive transmembrane currents, the Na'/K* pump cur-
rent, the Na'/Ca?* exchange current and the calcium
uptake and release in the sarcoplasmic reticulum [5].
Vagal activity is included through the burst release of
acetylcholine (ACh) from a main storage into the neu-
roeffector junctions and into the extrajunctional space.
The ACh concentration is assumed to rise instanta-
neously following the release. From the extrajunction-
al space, the acetylcholine is transported via a diffu-
sion-limited process to the neuroeffector junctions.
There, it activates the potassium current ik, ach via
fourth- order kinetics and modulates the hyperpolar-
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Figure 1. Effect of vagal stimulation on the potassium cur-
rent (ix, acn), the hyperpolarization activated current (if), and
the L-type calcium current (ica,L). The net effect on the trans-
membrane potential is a hyperpolarization that delays the
subsequent action potential upstroke.

ization activated current i+ and the L-type calcium cur-
rent ica L [6]. Figure 1 visualizes the effect of a burst
release of acetylcholine (ten stimuli) on these currents.
The net effect on the transmembrane potential consists
in hyperpolarization and a delay of the subsequent
upstroke in the action potential.

Obvioudly, the effect of vagal stimulation depends on
the number n of stimuli per burst. However, it also
depends on the timing of the burst within the cellular
cycle. Therefore, the level of vagal activity is adso
characterized by the phase f of the first stimulus with
respect to the cellular cycle and by the delay d of sub-
sequent stimuli within one burst. Since the interplay of
these three parametersis not known, two of them were
always kept fixed while the remaining one was modu-
lated with the Mackey-Glass system. Note, however,
that it is intrinsically impossible to keep the mean
phase of the burst fixed while varying the number of
stimuli or the delay. Any change in these parameters
will simultaneously result in a shift in the mean phase.

Non-linear System Analysis
In our model studies, we used a time-delayed non-lin-
ear differentia equation, that was originally introduced

by Mackey and Glass for describing the generation of
blood cells[7]:

P ax(t—e)

1+(x(z-0)" (Equation 1).
Equation 1 was integrated using a fourth order Runge-
Kuttamethod with parameter valuesof a=0.2,b=0.1,
n=10, and g = 17. Theresulting time series were used
to modulate vagal activity in the cell model. Then the
correlation dimension of the cycle lengths was esti-
mated and compared to the correlation dimension of
the original time series.
The correlation dimension is a measure of the com-
plexity of the trajectory of non-linear dynamic systems
in phase space. It was defined by Grassberger and
Procaccia as [10]

logC(s)

D, = lim ———=
e->0 loge

(Equation 2)
where the C(e) is the correlation integral

13
o) fn 5 2, (e =) (Equation 3).

The Heaviside function H is defined as

B 0fora <0
H(a)_{lforcx >0

(Equation 4).
Thus, the correlation integral C(€) is the number of
points in phase space with a distance of less than e
from some reference point. The correlation dimension
is equivalent to the topological dimension of regularly
shaped objects, i.e., the correlation dimension of aline
isone and the correlation dimension of a square istwo.
However, for irregularly shaped objects, the correla-
tion dimension assumes non-integer values and thus
allows for a more subtle characterization of the com-
plexity of geometric objects or of trgectories in phase
space.

The multi-dimensional phase space of a non-linear
dynamic system may be reconstructed out of the time
series of one single system variable by taking advan-
tage of Taken's theorem on time-delayed co-ordinates
[11]. The time-delayed coordinates of atime series x(t)
are defined as

W)= (1), 11 +7),.x(t+ (m—-1)2); (Equation 5).
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Figure 2. 3D embedding space of the Mackey-Glass system
(m=3,andt = 10).

Figure 2 shows an embedding space of the Mackey-
Glass system with m = 3, and t = 10. The theorem
states that the map defined in equation 5 is an embed-
ding of the system dynamics, if the embedding dimen-
sionm > 2 D2 + 1. This means that for high values of
m, the time-delayed co-ordinates are equivalent to the
phase space of the system. This theorem thus allows
the reconstruction of the phase space for both the orig-
inal Mackey-Glass time series and the resulting series
of cdlular cycle lengths. The correlation dimension is
then estimated iteratively for increasing embedding
dimension m by calculating the slope in the plot of log

Correlation integral

10°

C(e) over log e (Equation 2 suggests that there should
be alinear scaling region in the log-log plot). Figure 3
displays the plots of the correlation integral and the
resulting values of the slope for the origina Mackey-
Glasstime series. Note that with an increasing embed-
ding dimension m, the slope saturates against the value
of the correlation dimension D2 = 1.942 + 0.002.

Results and Discussion

Smulations with Constant Parameters for Vagal
Simulation

The investigation of the information transfer implies
the application of continued vagal stimulation, i.e.,
acetylcholine is released in every cdlular cycle. Since
the effect of avagal burst does not decay immediately,
the following burst encounters different conditions and
consequently has a different effect on the transmem-
brane currents. If the burst parameters reman un-
changed, eventually a steady state is achieved. This
behavior is visualized in Figure 4, where the phase of
the vagal burst has been increased every 600 cycles. It
ismost prominent in the beginning after vagal stimula-
tion has been turned on. Note that for values of the
phase 0.29 s< f < 0.37 s, the cycle length oscillates
even in the steady state between several values rather
than assuming one single value. This observation may
be explained by the latency of the effect of the vagal
burst on the transmembrane potential: for high values
of the phase, the burst does not affect the action poten-
tial that immediately follows it, but rather the second
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Figure 3. a) Correlation integrals of the original Mackey-Glass time series. b) Sope values as determined from Panel a. The
dlope saturates against the correlation dimension D2 = 1.942 + 0.002.
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Figure 4. Time series of the cycle length, where the phase f
of the vagal burst is increased every 600 cycles. Note
the oscillations of the cycle length for values of the phase
0.29s<f <037s

potential. This second action potential is then delayed
by the summed effect of two stimuli, whereas the third
potential is again influenced by only one vagal burst;
thus, the cycle length oscillates.

The relationship between the cycle length and the
delay d of subsequent stimuli within the burst is less

Cycle length (s)

a 0 500 1000 1500 2000

complex: the cycle length increases linearly with an
increasing delay d. Keeping the phase f and the delay
d constant while varying the number of stimuli leads to
the rather peculiar situation that the cycle length varies
in discrete steps rather than as a smooth function.
Obvioudly, such stepwise changes are completely
unphysiologic, and they haveindeed not been observed
in any experimental or clinical investigation. The real
sinus node consists of a large number of cells which
are not homogeneously innervated and which exert
entrainment effects on each other. In order to take into
account the averaging effect that results from this
behavior, we reduced the amount of acetylcholine per
stimulusin our simulations. Figure 5 displaysthe cycle
length as a function of the number of stimuli per burst.
In Figure 53, the delay d between consecutive stimuli
was kept constant, whereas in Figure 5b the total dura-
tion of the burst was kept constant, i.e., both the num-
ber of stimuli and the delay were varied. During con-
stant delay, the relationship between the cycle length
and the number of stimuli is linear over aimost the
whole range, whereas during constant total duration,
the cycle length is a curvilinear function of the number
of stimuli.

Smulations with Dynamic Modulation of the
Parameters of Vagal Simulation

All smulationsin this chapter have been executed with
the same input time series. The Mackey-Glass equation
was integrated for a= 0.2, b=0.1, n=10,andq = 17
with a step size of 0.01. The resulting time series was
sampled with adelay time of t = 10 and scaled accord-
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Figure 5. Cycle length as a function of the number n of stimuli per burst at constant delay (a) and at constant total duration

of the burst (b).
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Figure 6. 3D embedding space of the cycle lengths (CL),
when the number n of stimuli per burst is modulated by the
Mackey-Glass time series (constant burst phase f = 0.1 s
and constant total burst duration dwa = 0.3 5). The attrac-
tor is distinctly distorted as compared to the original one in
Figure 2.

ing to the value range of the parameter to be modulat-
ed. This approach ensures that the simulation uses the
entire dynamic range of the modulated parameter, and
avoids offset effects.

The investigations during steady state situations as
described above have revealed a rather complex rela

Correlation integral
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tionship between the parameters of vagal stimulation
and the resulting cycle length. The information transfer
in the sinus node cell thus may be affected by oscilla-
tions and non-linearities, depending on the parameter
that is modulated. In addition, it has been shown that
hysteresis effects influence the cycle length during
vagal stimulation, i.e., the effect of a stimulus indeed
depends on the parameters of the previous one. It is
therefore quite remarkable that vagal activity can be
mapped one-to-one on the cycle length, if the parame-
tersthat led to alinear dependence of the resulting cycle
lengths during steady state simulations are modulated: If
the delay between subsequent stimuli is modulated with
the Mackey-Glass time series (constant phasef = 0.2 s
and number of stimuli n = 5), the correlation dimension
of the cycle lengths of D2 = 1.943 + 0.001 is nearly
identical to the value assumed for the original time
series: D2 = 1.942 + 0.002. Also modulation of the
number of pulses per burst (constant phase f and delay
d =0.001 s) has only marginal influence on the scaling
behavior of the trajectory: D2 = 1.989 + 0.002. Thus,
the hysteresis effects observed during steady state
conditions do not seem to play arole during dynamic
modulations.The situation changes, however, in those
simulations where the cycle length does not depend
linearly on the modulated input parameter. Figure 6
displays the 3D embedding space of the cycle
lengths, where the number n of stimuli per burst is
modulated by the Mackey-Glass time series (constant
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Figure 7. a) Correlation integrals of the cycle lengths, where the number n of stimuli per burst is modulated by the Mackey-
Glasstime series (one pulse per "burst"). b) Sope values calculated. Saturation occurs rather late and at a value higher than

in the original system (D2 = 2.027 = 0.002; for m> 15).
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burst phasef = 0.1 sand constant total burst duration
dota = 0.3 5). The attractor still consists of two inter-
woven bands of points. However, the edges are pro-
longed in the direction of the co-ordinate axes. The
correlation integrals do not exhibit a linear scaling
region, hence it is not possible to determine a corre-
lation dimension.

Theresultsare similar if the phasef is modulated with
the Mackey-Glass time series during a constant num-
ber of pulses per "burst" of n = 1. The oscillations and
the discontinuity revealed by Figure 4 lead to heavy
distortions in the embedding space of the cycle lengths
as compared to the origina attractor. This is reflected
by the correlation integrals shown in Figure 7a, where
the scaling region is of minor quality. Figure 7b dis-
plays the corresponding slope values. They saturate
only at high values of the embedding dimension, and
the saturation value of 2.027 + 0.002 differs from the
original time series.

It may be argued that those values of the burst phase
where the oscillations and the discontinuity are ob-
served are rather unphysiological: In the intact cardio-
vascular system, the contraction of the heart produces a
pressure wave that stimulates the aortic baroreceptors.
The afferent nerve stimulation is transduced in the
medulla oblongata into efferent parasympathetic nerve
activity, which eventually results in acetylcholine
release at the cardiac vagal nerve endings. The burst
phase is thus determined by the latency times of the
described system and does not achieve values that pro-
voke cycle length oscillations. We therefore ran asim-
ulation where these values of the burst phase were for-
bidden. The resulting cycle lengths then exhibited
undistorted scaling behavior, and the correlation dimen-
sion assumed a value of D2 = 1.954 + 0.001, which is
nearly identical to the value of D2 = 1.942 + 0.002
achieved for the original attractor.

Conclusions

We have investigated the transfer of information from
parasympathetic activity to the cycle lengths of a sin-
gle sinus node cell in a numerical model. Our model is
a smplification of the physiologic situation with
respect to three points: First, effects resulting from the
mutual entrainment of the numerous cells in a com-
plete sinus node are neglected in using the single-cell
approach. Second, we have compensated for the dis-
crete nature of vagal burst stimulation in arather crude

way by reducing the amount of acetylcholine per stim-
ulus in the respective simulations. Third, since no data
is available on the interplay of the burst phase, stimu-
lus delay, and number of stimuli, we had to artificially
separate these parameters. Taking these limitationsinto
account, we are still able to draw some general conclu-
sions from our results. In general, the dynamic con-
stants of the cardiovascular autonomic control are not
conserved by the sinus node cell. Hence, it is general -
ly not possible to reconstruct the phase space of the
autonomic control from the cardiac cycle lengths.
However, we have found areas in parameter space
where the information on the dynamics of the cardio-
vascular control is mapped one-to-one onto the cycle
lengths. The information encoded in the delay between
subsequent stimuli within one burst, the information
encoded in the burst phase, and the information encod-
ed in the number of stimuli at constant delay is essen-
tially conserved by the sinus node cell. On the other
hand, we have shown that the attractor is significantly
distorted when the number of pulsesis modulated dur-
ing constant total duration of the burst. This means that
the sinus node is a non-trivial part of the cardiovascu-
lar autonomic control. All measurements of heart rate
variability thus reflect the dynamics of not only the
autonomic control, but also the sinus node.
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