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Introduction

The importance of QRS detection results from the
wide use of the timing information of this component,
e.g., in heart rate variability analysis, ECG classifica-
tion, and ECG compression. In most cases, the tempo-
ral location of the R-wave is taken as the location of
the QRS complex. Missed or falsely detected beats are
problematic in all of these applications and may lead to
poor results. The literature [1,2] clearly indicates that
the number of false detections may increase signifi-
cantly in the presence of poor signal-to-noise ratios or
pathological signals. Detection errors can be reduced
by the application of computationally more expensive
algorithms, for instance by the implementation of
reverse search methods. However, particularly in the
case of battery-driven devices, the computational com-
plexity needs to be kept low. Hence, a tradeoff between
computational complexity and detection performance
needs to be found.
The detection of QRS complexes and R-waves in ECG
signals has been studied for several decades. Most of
the earliest algorithms are based on feature signals
obtained from the derivatives of the ECG signal [3-9].

As long as no additional rules for the reduction of false
detections are applied, these methods are characterized
by low computational complexity and relatively poor
detection results in the presence of problematic signals
(e.g., containing baseline drift, noise and artifacts, as
well as changes in the QRS morphology). For an
overview of algorithms based on the first and second
order derivative of the ECG, see [1].
Additionally, more sophisticated digital filters have
been used as peak detectors for ECG signals, providing
better feature signals for disturbed ECG signals [2,9-
19]. Many standard signal processing methods have
been applied to QRS and R-wave detection, such as
methods from the field of linear and nonlinear filtering
[20], wavelet transform [21-22], artificial neural net-
works [23-24], genetic algorithms [25], and linear pre-
diction [26]. These algorithms [1,20-28] are generally
much more complex compared to derivative-based
methods and thus exhibit significantly better detection
results. 
In this paper, an algorithm is proposed that simultane-
ously meets the demands of a low computational load
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ings per segment with a moving window leads to the
feature signal depicted in Figure 2d. Characteristically
the feature signal assumes low values during a QRS
complex and high values otherwise. The maximum
value of the feature signal is given by the length N of
the moving window. The feature generation is based on
the Dominant Frequency Principle known from the lit-
erature [31]. The number of zero crossings per segment
is an equivalent representation of the frequency of the
dominant component of a signal segment. It can be
considered as roughly proportional to the dominant
frequency. Accordingly, for a low-frequency compo-
nent one can expect fewer zero crossings per segment
than for a high-frequency component. After the addi-
tion of the high-frequency sequence b(n), the signal is
dominated by a low-frequency oscillation during the
QRS complex and dominated by the high-frequency
sequence otherwise. Hence, the number of zero cross-
ings must be low during the QRS complex and high at
all other times.

and a high detection performance. The proposed
method is based on a feature that is obtained by count-
ing the number of zero crossings per segment. It is a
feature signal that is largely independent of sudden
changes in the amplitude level of the signal and is
robust against noise and pathological signal morpholo-
gies. It is shown that this feature can be used for a com-
putationally simple algorithm with a high detection
performance.

Methods

Algorithm Overview
Figure 1 shows the block diagram of the algorithm.
The algorithm consists of three stages: the extraction
of the feature signal, the event detection, and the tem-
poral localization of the R-wave.

Feature extraction: The frequency content of a QRS
complex may extend up to 40 Hz and more, whereas P-
and T-waves usually have frequency components of up
to 10 Hz [20,30]. Due to these spectral characteristics
of the ECG components, it is reasonable to filter the
ECG signal at first in order to attenuate the mean, the
P- and T-wave, and the high frequency noise. Because
the filtered signal will be used for the temporal local-
ization of the R-wave, it is important to use a band pass
filter with a linear phase response. Otherwise, an accu-
rate localization of the R-wave would be impossible.
As depicted in Figure 2b, the band pass filtered signal
oscillates around zero. During the QRS complex it has
a high amplitude; otherwise its amplitude is low. Then,
adding a low-power, high-frequency sequence to the
band bass filtered signal as shown in Figure 2c leads to
a signal that has many zero crossings during non-QRS
segments and only a small number of zero crossings
during the QRS complex. The high frequency sequen-
ce may be computed as

(1)

where n denotes the time index and K(n) is a time-
varying amplitude. Counting the number of zero cross-

Figure 1. Stages of the algorithm.

Figure 2. Qualitative time course of the signals in the fea-
ture extraction stage. Panel a) original ECG signal, panel b)
band pass filtered ECG signal, panel c) signal after adding
the high-frequency sequence, panel d) zero crossing count
(exponential window).
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Event Detection: An event begins when the feature sig-
nal (number of zero crossings per segment) falls below
a signal-adaptive threshold as shown in Figure 3. The
events ends when the signal rises above the threshold.
Both the beginning and the end of the event are the
boundaries of the search interval for the temporal
localization of the R-wave. If adjacent events are tem-
porally very close (multiple events), they will be com-
bined into one single event. The beginning of the com-
bined event is the beginning of the first event, and the
end of the combined event is the end of the last event.

Temporal localization of the R-wave: The detection of
the QRS complex is completed by the determination of
the temporal location of the R-wave. If only one ECG
channel is used for the detection of the R-wave, the
electrical position of the heart needs to be taken into
consideration. For that purpose the temporal location is
determined by a combined maximum/minimum
search. A simple decision logic decides whether to use
the maximum or the minimum position of the search
interval as the temporal location of the R-wave.

Detailed Description of the Feature Extraction

Block diagram of the feature extraction: The block dia-
gram of the QRS detection algorithm is shown in
Figure 4. It consists of a band pass filter, a non-linear
transform, the amplitude estimation and addition of the
high-frequency sequence, the zero crossing detection,
and the zero crossing counter. The input signal is the
original ECG, and the output is the feature signal.

Linear and nonlinear filtering: As in most convention-
al algorithms, band pass filtering is performed as a pre-
processing method in order to increase the signal to

noise ratio, i.e., to attenuate the mean, the P- and the T-
wave, as well as some high-frequency noise. In our
implementation a 27 tap linear phase FIR filter is used.
The cut-off frequencies are 18 Hz and 35 Hz. In some
cases, simpler filters may be sufficient. In case of
insignificant high-frequency components, the low pass
part of the band pass can be omitted. A further increase
in the signal quality is achieved by a nonlinear trans-
form of the signal

(2)

where xf (n) denotes the band pass filtered ECG and
y(n) denotes the non-linearly transformed signal.
The signal y(n) will be used later for the determination
of the temporal location of the R-wave.

Amplitude estimation and addition of a high-frequency
sequence: Due to the application of the band pass filter
within the signal y(n), high-frequency oscillations are
strongly attenuated. Hence, it is necessary to add a
high-frequency sequence 

(3)

to the signal, i.e.,

(4)

in order to increase the number of zero crossings dur-
ing non-QRS segments. In the ideal case, the feature
signal D(n) assumes the value D(n) = N during non-
QRS segments and D(n) < N during the QRS complex
as depicted in Figure 2. However, if the amplitude K(n)
of the high-frequency sequence b(n) is too large, the
number of zero crossings is always N. If K(n) is too
small, the feature signal is noisy, and the difference
between the number of zero crossings during the QRS
segments and non-QRS segments is not significant

Figure 3. Event detection. Figure 4. Block diagram of the feature extraction.
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events, a refinement is necessary. For that reason the
distance between events is considered. The distance
between two events is defined, according to the draw-
ing in Figure 6, as the time between the end of one
event and the beginning of the next. If the distance
between two detected events is too short, both events
are combined into one single event. This method can
be implemented very easily in a serial processing mode
by using a timer that provides a time-out after some
time past the end of the last event. The end of the event
is only valid if the next event starts after the time-out.
Otherwise, both events are combined into one single
event. A valid end triggers the search for the temporal
location of the R-wave.

Temporal Localization of the R-wave
The beginning and the end, i.e., the temporal location
of the event, provide the bounds for the search interval
that is used for the temporal localization of the R-
wave. The electrical position of the heart has a great
impact on the amplitude and the sign of the R-wave.
For this reason, a combined maximum/minimum
search in the signal y(n) is carried out. If the magnitude
of the minimum is much larger than the magnitude of

enough for a good classification. Hence, the amplitude
K(n) of the sequence must be properly determined. In
our implementation, K(n) is determined from the mag-
nitude of the signal y(n)

(5)

where λΚ ∈ (0;1) is a forgetting factor, and the design
parameter c denotes a constant gain, e.g., c = 4.

Detection and Counting of Zero Crossings: There are
several methods for the detection of zero crossings; for
an overview see [31]. In our implementation we use

(6)

The number of zero crossings per segment is usually
computed by

(7)

The operation in Equation 7 is a low pass filtering
operation. Although it can be implemented in a com-
putationally efficient way by some delays and one
feedback connection, this type of filter is not used.
Instead of the filter in Equation 7, a first order autore-
gressive low pass filter is implemented, i.e.,

(8)

where λD ∈ (0;1) is a forgetting factor. Similarly to the
filter in Equation 7, the filter in Equation 8 can also be
implemented very efficiently. Furthermore, with
respect to a processor or direct hardware implementa-
tion, the latter filter has the advantage of being more
easily adjustable and less memory-consuming.

Detailed Description of Event Detection
Event detection is accomplished using an adaptive
threshold θ. It is computed from the feature signal as 

(9)

where λΘ ∈ (0;1) represents a forgetting factor. For the
detection of an event, the threshold θ(n) is compared to
the feature signal D(n). When D(n) falls below the
threshold an event is detected. This simple detection
logic is suitable for a smooth feature signal. However,
in some cases the feature signal has more than one
peak for one QRS complex, as shown in Figure 5. In
order to prevent the algorithm from detecting multiple

Figure 5. Detection of multiple events.

Figure 6. Distance between two events.
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the maximum, the temporal location of the minimum is
taken as the time of the R-wave. Otherwise, the maxi-
mum position determines the location of the R-wave.
For the actual position of the R-wave, the group delay
of the band pass filter needs to be taken into consider-
ation.

Example
Figure 7 depicts several signals from the different
stages of the algorithm. The signal segment is taken
from record 107 of the MIT/BIH Arrhythmia Database
[32]. It is clear that the band pass filter is far from per-
fect. A great increase in the signal to noise ratio is
achieved by the non-linearity. The feature signal shows
the typical exponentially shaped time course, which is

due to the application of the first order autoregressive
averaging filter. As described in the previous subsec-
tion, the feature signal has more than one minimum per
QRS complex in most cases. However, due to combin-
ing close multiple events into one single event, multi-
ple detections are mostly avoided.

Results

The algorithm was validated against the MIT-BIH
arrhythmia database. Each record of the database con-
sists of two channels. Only the first channel was used
for evaluating the performance of the algorithm. The
first 5 minutes of a record are generally considered as
a training set [32] and hence left unconsidered within
the statistics. As performance measures, the indices
from [33], [20] were used, i.e.,

sensitivity (10)

positive predictivity (11)

where TP denotes the number of true positives, FN is
the number of false negatives, and FP is the number of
false positives. A beat is considered as correctly detect-
ed within a window of ± 75 ms around the true tempo-
ral beat location. The algorithm was implemented
using the Visual C++ programming language. On a 
450 MHz Pentium III personal computer the algorithm
required about 7 s to process a 0.5-hour record of the
MIT-BIH Arrhythmia Database. Table I shows the
results of the algorithm. The sensitivity of the algo-
rithm is 99.70% (277 FNs) and its positive predictivity
99.57% (390 FPs). The largest number of false positive
detections were in record 207. This record is particu-
larly difficult for the algorithm. For many very noisy
records, for example record 108, the algorithm
achieves not perfect but fairly good results. In some
records, the last R-wave is located very close to the end
of the record, e.g., in record 100. Due to the delay of
the algorithm those beats are not detected.

Discussion

The algorithm has only a few parameters, e.g., the
band pass filter, the forgetting factors λΚ, λD, and λΘ,
the constant gain c, the timeout period in the event

Figure 7. Segment from record 107 of the MIT-BIH arrhyth-
mia database [32]. Panel a) original ECG signal, panel b)
ECG signal after the band pass filter xf (n), panel c) ECG
signal after the non-linearity y(n), panel d) signal after the
addition of the high-frequency sequence z(n), panel e) fea-
ture signal D(n), panel f) event signal (low: no event, high:
during event), panel g) detected beats after the temporal
localization of the R-wave.
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detection stage, and the threshold of the sign decision
within the R-wave localization. If physiologically rea-
sonable forgetting factors and timeout periods are cho-
sen, the algorithm works reliably, also in cases of
minor parameter maladjustments. Due to the non-lin-
ear type of the algorithm, the impact of the different
parameters on the performance is not independent
from each other. However, from our experience with
this algorithm, the impact of these interdependencies
does not lead to real tuning problems. The band pass
filter has a great impact on the performance of the
algorithm. It is most important that this filter removes
the P-wave and the T-wave. Hence, this filter needs to
be chosen carefully. If only one of these components
remains within the signal, the algorithm will fail.
The number of zero crossings per segment is a good
feature for event detection. One major reason is its
robustness against amplitude level variations of the
ECG. QRS detection methods that are comparable
with respect to the computational load often use first

Figure 8. Comparison between amplitude based features
and the zero crossing based feature: the zero crossing based
feature is robust against amplitude level variations of the
ECG signal.

Table 1. Performance of the zero crossing based QRS detec-
tion algorithm on MIT/BIH database [32].
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and second derivatives for the formation of the fea-
ture. Although the number of zero crossings per seg-
ment is not independent of the steepness, i.e., the
derivative of the signal, the number of zero crossings
contains additional information that is advantageous
for QRS detection: For derivative-based feature sig-
nals, variations in the amplitude level or the mor-
phology of the R-peak result in changes of derivative-
based feature signals. In contrast to this, the number
of zero crossings does not change with the amplitude
variations in problematic sections of the ECG signal
(Figure 8). This characteristic leads to a significant
improvement of the detection performance on the
level of computational expensive algorithms (e.g.,
[20] and [21]). The results in Table I show that for the
formation of a feature signal, the number of zero
crossings is superior to the derivative. Of course, the
sensitivity depends on the amplitude K(n) of the high-
frequency sequence b(n). However, this amplitude is
easily controllable by the algorithm. The algorithm
inherits its robustness against noise from the general
robustness of zero crossing signal processing meth-
ods against noise. The combination of temporarily
close events into one single event replaces the usual
refractory period. Furthermore, it prevents the execu-
tion of several R-wave searches for only one QRS
complex and hence increases the efficiency of the
algorithm.
The computational load is low. The computationally
most consuming stages are the band pass filter and the
maximum/minimum search for the temporal localiza-
tion of the R-wave. Downsampling, as carried out in
other algorithms, e.g. [20], is generally possible.
However, because the algorithm utilizes the morpholo-
gy of the signal, i.e., the oscillation of the QRS com-
plex, it does not seem to be reasonable to use a sam-
pling rate below 150 Hz.

Conclusion

A QRS detection algorithm based on zero crossings is
presented. To our knowledge, it is the first time that
this signal processing method has been applied to QRS
detection. It has been shown that the number of zero
crossings is a valuable feature that can be used for QRS
detection purposes. The performance of the algorithm
is comparable to other algorithms reported in the liter-
ature. Due to this simple principle, QRS detection can
be realized at low computational costs.
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